#! /usr/bin/env python """ Implementation of Elliptic-Curve Digital Signatures. Classes and methods for elliptic-curve signatures: private keys, public keys, signatures, NIST prime-modulus curves with modulus lengths of 192, 224, 256, 384, and 521 bits. Example: # (In real-life applications, you would probably want to # protect against defects in SystemRandom.) from random import SystemRandom randrange = SystemRandom().randrange # Generate a public/private key pair using the NIST Curve P-192: g = generator_192 n = g.order() secret = randrange( 1, n ) pubkey = Public_key( g, g * secret ) privkey = Private_key( pubkey, secret ) # Signing a hash value: hash = randrange( 1, n ) signature = privkey.sign( hash, randrange( 1, n ) ) # Verifying a signature for a hash value: if pubkey.verifies( hash, signature ): print_("Demo verification succeeded.") else: print_("*** Demo verification failed.") # Verification fails if the hash value is modified: if pubkey.verifies( hash-1, signature ): print_("**** Demo verification failed to reject tampered hash.") else: print_("Demo verification correctly rejected tampered hash.") Version of 2009.05.16. Revision history: 2005.12.31 - Initial version. 2008.11.25 - Substantial revisions introducing new classes. 2009.05.16 - Warn against using random.randrange in real applications. 2009.05.17 - Use random.SystemRandom by default. Written in 2005 by Peter Pearson and placed in the public domain. """ from . import ellipticcurve from . import numbertheory class RSZeroError(RuntimeError): pass class Signature(object): """ECDSA signature. """ def __init__(self, r, s, recovery_param): self.r = r self.s = s self.recovery_param = recovery_param def recover_public_keys(self, hash, generator): """Returns two public keys for which the signature is valid hash is signed hash generator is the used generator of the signature """ curve = generator.curve() n = generator.order() r = self.r s = self.s e = hash x = r # Compute the curve point with x as x-coordinate alpha = (pow(x, 3, curve.p()) + (curve.a() * x) + curve.b()) % curve.p() beta = numbertheory.square_root_mod_prime(alpha, curve.p()) y = beta if beta % 2 == 0 else curve.p() - beta # Compute the public key R1 = ellipticcurve.Point(curve, x, y, n) Q1 = numbertheory.inverse_mod(r, n) * (s * R1 + (-e % n) * generator) Pk1 = Public_key(generator, Q1) # And the second solution R2 = ellipticcurve.Point(curve, x, -y, n) Q2 = numbertheory.inverse_mod(r, n) * (s * R2 + (-e % n) * generator) Pk2 = Public_key(generator, Q2) return [Pk1, Pk2] class Public_key(object): """Public key for ECDSA. """ def __init__(self, generator, point): """generator is the Point that generates the group, point is the Point that defines the public key. """ self.curve = generator.curve() self.generator = generator self.point = point n = generator.order() if not n: raise RuntimeError("Generator point must have order.") if not n * point == ellipticcurve.INFINITY: raise RuntimeError("Generator point order is bad.") if point.x() < 0 or n <= point.x() or point.y() < 0 or n <= point.y(): raise RuntimeError("Generator point has x or y out of range.") def verifies(self, hash, signature): """Verify that signature is a valid signature of hash. Return True if the signature is valid. """ # From X9.62 J.3.1. G = self.generator n = G.order() r = signature.r s = signature.s if r < 1 or r > n - 1: return False if s < 1 or s > n - 1: return False c = numbertheory.inverse_mod(s, n) u1 = (hash * c) % n u2 = (r * c) % n xy = u1 * G + u2 * self.point v = xy.x() % n return v == r class Private_key(object): """Private key for ECDSA. """ def __init__(self, public_key, secret_multiplier): """public_key is of class Public_key; secret_multiplier is a large integer. """ self.public_key = public_key self.secret_multiplier = secret_multiplier def sign(self, hash, random_k): """Return a signature for the provided hash, using the provided random nonce. It is absolutely vital that random_k be an unpredictable number in the range [1, self.public_key.point.order()-1]. If an attacker can guess random_k, he can compute our private key from a single signature. Also, if an attacker knows a few high-order bits (or a few low-order bits) of random_k, he can compute our private key from many signatures. The generation of nonces with adequate cryptographic strength is very difficult and far beyond the scope of this comment. May raise RuntimeError, in which case retrying with a new random value k is in order. """ G = self.public_key.generator n = G.order() k = random_k % n p1 = k * G r = p1.x() % n if r == 0: raise RSZeroError("amazingly unlucky random number r") s = (numbertheory.inverse_mod(k, n) * (hash + (self.secret_multiplier * r) % n)) % n if s == 0: raise RSZeroError("amazingly unlucky random number s") recovery_param = p1.y() % 2 or (2 if p1.x() == k else 0) return Signature(r, s, recovery_param) def int_to_string(x): """Convert integer x into a string of bytes, as per X9.62.""" assert x >= 0 if x == 0: return b'\0' result = [] while x: ordinal = x & 0xFF result.append(int.to_bytes(ordinal, 1, 'big')) x >>= 8 result.reverse() return b''.join(result) def string_to_int(s): """Convert a string of bytes into an integer, as per X9.62.""" result = 0 for c in s: if not isinstance(c, int): c = ord(c) result = 256 * result + c return result def digest_integer(m): """Convert an integer into a string of bytes, compute its SHA-1 hash, and convert the result to an integer.""" # # I don't expect this function to be used much. I wrote # it in order to be able to duplicate the examples # in ECDSAVS. # from hashlib import sha1 return string_to_int(sha1(int_to_string(m)).digest()) def point_is_valid(generator, x, y): """Is (x,y) a valid public key based on the specified generator?""" # These are the tests specified in X9.62. n = generator.order() curve = generator.curve() if x < 0 or n <= x or y < 0 or n <= y: return False if not curve.contains_point(x, y): return False if not n * ellipticcurve.Point(curve, x, y) == ellipticcurve.INFINITY: return False return True # NIST Curve P-192: _p = 6277101735386680763835789423207666416083908700390324961279 _r = 6277101735386680763835789423176059013767194773182842284081 # s = 0x3045ae6fc8422f64ed579528d38120eae12196d5L # c = 0x3099d2bbbfcb2538542dcd5fb078b6ef5f3d6fe2c745de65L _b = 0x64210519e59c80e70fa7e9ab72243049feb8deecc146b9b1 _Gx = 0x188da80eb03090f67cbf20eb43a18800f4ff0afd82ff1012 _Gy = 0x07192b95ffc8da78631011ed6b24cdd573f977a11e794811 curve_192 = ellipticcurve.CurveFp(_p, -3, _b) generator_192 = ellipticcurve.Point(curve_192, _Gx, _Gy, _r) # NIST Curve P-224: _p = 26959946667150639794667015087019630673557916260026308143510066298881 _r = 26959946667150639794667015087019625940457807714424391721682722368061 # s = 0xbd71344799d5c7fcdc45b59fa3b9ab8f6a948bc5L # c = 0x5b056c7e11dd68f40469ee7f3c7a7d74f7d121116506d031218291fbL _b = 0xb4050a850c04b3abf54132565044b0b7d7bfd8ba270b39432355ffb4 _Gx = 0xb70e0cbd6bb4bf7f321390b94a03c1d356c21122343280d6115c1d21 _Gy = 0xbd376388b5f723fb4c22dfe6cd4375a05a07476444d5819985007e34 curve_224 = ellipticcurve.CurveFp(_p, -3, _b) generator_224 = ellipticcurve.Point(curve_224, _Gx, _Gy, _r) # NIST Curve P-256: _p = 115792089210356248762697446949407573530086143415290314195533631308867097853951 _r = 115792089210356248762697446949407573529996955224135760342422259061068512044369 # s = 0xc49d360886e704936a6678e1139d26b7819f7e90L # c = 0x7efba1662985be9403cb055c75d4f7e0ce8d84a9c5114abcaf3177680104fa0dL _b = 0x5ac635d8aa3a93e7b3ebbd55769886bc651d06b0cc53b0f63bce3c3e27d2604b _Gx = 0x6b17d1f2e12c4247f8bce6e563a440f277037d812deb33a0f4a13945d898c296 _Gy = 0x4fe342e2fe1a7f9b8ee7eb4a7c0f9e162bce33576b315ececbb6406837bf51f5 curve_256 = ellipticcurve.CurveFp(_p, -3, _b) generator_256 = ellipticcurve.Point(curve_256, _Gx, _Gy, _r) # NIST Curve P-384: _p = 39402006196394479212279040100143613805079739270465446667948293404245721771496870329047266088258938001861606973112319 _r = 39402006196394479212279040100143613805079739270465446667946905279627659399113263569398956308152294913554433653942643 # s = 0xa335926aa319a27a1d00896a6773a4827acdac73L # c = 0x79d1e655f868f02fff48dcdee14151ddb80643c1406d0ca10dfe6fc52009540a495e8042ea5f744f6e184667cc722483L _b = 0xb3312fa7e23ee7e4988e056be3f82d19181d9c6efe8141120314088f5013875ac656398d8a2ed19d2a85c8edd3ec2aef _Gx = 0xaa87ca22be8b05378eb1c71ef320ad746e1d3b628ba79b9859f741e082542a385502f25dbf55296c3a545e3872760ab7 _Gy = 0x3617de4a96262c6f5d9e98bf9292dc29f8f41dbd289a147ce9da3113b5f0b8c00a60b1ce1d7e819d7a431d7c90ea0e5f curve_384 = ellipticcurve.CurveFp(_p, -3, _b) generator_384 = ellipticcurve.Point(curve_384, _Gx, _Gy, _r) # NIST Curve P-521: _p = 6864797660130609714981900799081393217269435300143305409394463459185543183397656052122559640661454554977296311391480858037121987999716643812574028291115057151 _r = 6864797660130609714981900799081393217269435300143305409394463459185543183397655394245057746333217197532963996371363321113864768612440380340372808892707005449 # s = 0xd09e8800291cb85396cc6717393284aaa0da64baL # c = 0x0b48bfa5f420a34949539d2bdfc264eeeeb077688e44fbf0ad8f6d0edb37bd6b533281000518e19f1b9ffbe0fe9ed8a3c2200b8f875e523868c70c1e5bf55bad637L _b = 0x051953eb9618e1c9a1f929a21a0b68540eea2da725b99b315f3b8b489918ef109e156193951ec7e937b1652c0bd3bb1bf073573df883d2c34f1ef451fd46b503f00 _Gx = 0xc6858e06b70404e9cd9e3ecb662395b4429c648139053fb521f828af606b4d3dbaa14b5e77efe75928fe1dc127a2ffa8de3348b3c1856a429bf97e7e31c2e5bd66 _Gy = 0x11839296a789a3bc0045c8a5fb42c7d1bd998f54449579b446817afbd17273e662c97ee72995ef42640c550b9013fad0761353c7086a272c24088be94769fd16650 curve_521 = ellipticcurve.CurveFp(_p, -3, _b) generator_521 = ellipticcurve.Point(curve_521, _Gx, _Gy, _r) # Certicom secp256-k1 _a = 0x0000000000000000000000000000000000000000000000000000000000000000 _b = 0x0000000000000000000000000000000000000000000000000000000000000007 _p = 0xfffffffffffffffffffffffffffffffffffffffffffffffffffffffefffffc2f _Gx = 0x79be667ef9dcbbac55a06295ce870b07029bfcdb2dce28d959f2815b16f81798 _Gy = 0x483ada7726a3c4655da4fbfc0e1108a8fd17b448a68554199c47d08ffb10d4b8 _r = 0xfffffffffffffffffffffffffffffffebaaedce6af48a03bbfd25e8cd0364141 curve_secp256k1 = ellipticcurve.CurveFp(_p, _a, _b) generator_secp256k1 = ellipticcurve.Point(curve_secp256k1, _Gx, _Gy, _r)